METAL COMPLEXES WITH PYRAZOLE-DERIVED LIGANDS IV. Thermal decomposition of cobalt(II) complexes with 3(5)-amino-4-acetyl-5(3)-methylpyrazole

A. F. Petrović, S. R. Lukić, D. M. Petrović, E. Z. Ivegeš¹ and V. M. Leovac¹

Institute of Physics, Faculty of Sciences, Trg D. Obradovića 4, 21000 Novi Sad ¹Institute of Chemistry, Faculty of Sciences, Trg D. Obradovića 3, 21000 Novi Sad, Yugoslavia

(Received December 13, 1995)

Abstract

The thermal decomposition of tetrahedral cobalt(II) complexes with 3(5)-amino-4-acetyl-5(3)-methylpyrazole (HL) of the general formula [Co(HL)₂X₂] (X=Cl, Br, I, NCO, NCS) and octahedral [Co(HL)₂(H₂O)₄](NO₃)₂ and [Co(HL)₂{N(CN)₂}₂] complexes was investigated in air atmosphere in the interval from room temperature to 1000°C. Decomposition of the complexes occurred in several successive endothermic and exothermic processes, and the residue was in all cases CoO.

Keywords: complexes, cobalt(II), 3(5)-amino-4-acetyl-5(3)-methilpyrazole, thermal decomposition

Introduction

In our previous article [1] we have reported the synthesis and some phisicochemical characteristics (magnetic susceptibility, molar conductivity, IR, reflectance and absorption electronic spectra) of the tetrahedral Co(II) complexes with 3(5)-amino-4-acetyl-5(3)-methylpyrazole (HL) of the general formula $[Co(HL)_2X_2]$ (X=Cl, Br, I, NCO, NCS) as well as the octahedral $[Co(HL)_2(H_2O)_4](NO_3)_2$ and $[Co(HL)_2\{N(CN)_2\}_2]$ complexes.

Fig. 1 Tautometric forms of 3(5)-amino-4-acetyl-5(3)-methylpyrazole

0368–4466/96/ \$ 5.00 © 1996 Akadémiai Kiadó, Budapest John Wiley & Sons, Limited Chichester The present article describe thermal decomposition of these complexes as well as of the ligand HL (Fig. 1).

Experimental

Thermogravimetric measurements were carried out on a Paulik-Paulik-Erdey derivatograph (MOM, Hungary). Samples of 100 mg were heated up to 1000°C at a rate of 10°C min⁻¹, in the air atmosphere in a Pt crucible, and using α -Al₂O₃ as reference material.

Analysis of the final product was carried out with an automatic PW 1373 (Philips) powder diffractometer and by means of ASTM data.

Results and discussion

Thermal decomposition of the ligand 3(5)-amino-4-acetyl-5(3)-methylpyrazole and its complexes takes place in several endo- and exothermic processes (Table 1). As the first endothermic effect for the ligand (Fig. 2) is not accompanied by a decrease in mass of the sample, it can be ascribed to its melting. The second endothermic effect of the ligand is accompanied by a decrease in mass too, and can be ascribed to elimination of NH₃, what is confirmed by the appropriate qualitative reaction (litmus). It is interesting to notice that the process of melting is not observed with the complexes. Namely, with the halide-containing complexes, (Figs 3-5), the first endothermic effect is most probably related to elimination of HX (X=CI, Br, I), whereby in the case of bromide and iodide complexes, only 50% of the HX eliminated. The endothermic effects accompanying the elimination of the rest of HX at higher temperatures are obscured by the exothermic effects due to elimination of the organic ligand. It should be noted that close temperature intervals of the endothermic effects accompanying elimination of these fragments have also been observed in decomposition of some other halogen-containing complexes [2, 3]. The NCS-complex behaves in similar way as bromide and iodide complexes (Fig. 6).

The next endothermic effect, registered with all tetrahedral complexes, including the NCO-complex (Fig. 7), (for which this is the first and only endothermic effect), is most probably due to elimination of the NH₂-group. An indication for this is the nitrogen content (Found 14.6%, Calc. 18.6%) in the residue of the chloride complex (CoL^{*}₂) after its isothermal heating (420°C, 2 h). Namely, a qualitative test on the presence of chlorine in this residue gave a negative result, which confirms the supposition that the chlorine was completely eliminated at lower temperatures (ca. 400°C). This is in contrast to the literature report [4] that the complex Co(3,5-DMP)₂Cl₂ (3,5-DMP=3,5-dimethylpyrazole) loses first the whole organic ligand, so that the residue (570°C) is CoCl₂.

881

J. Thermal Anal., 47, 1996

J. Thermal Anal., 47, 1996

Effect	<i>T/K</i> -	Mass loss		Fragment	
		found/%	calc./%	eliminated	
		HL			
endo	503	-	-	melting	
endo	503-623	36.0	36.6	3NH3	
exo	623-1093	64.0	63.4	HL-residue	
		[Co(HL) ₂ Cl ₂]			
endo	553-683	19.0	17.9	2HCl	
endo	683-718	8.0	8.3	2NH₃	
exo	718-1023	58.0	55.4	2L*	
residue CoO	1023	15.0	18.4		
		[Co(HL) ₂ Br ₂]			
endo	553-683	16.0	16.3	HBr	
endo	683–743	9.0	7.0	2NH ₃	
exo	7431063	63.0	61.7	2L*+HBr	
residue CoO	1063	12.0	15.0		
		$[Co(HL)_2I_2]$			
endo	538-693	20.0	21.6	HI	
endo	693753	5.0	5.8	2NH ₃	
exo	753–1013	63.0	60.0	2L*+HI	
residue CoO	1013	12.0	12.6		
		$[Co(HL)_2(NCO)_2]$			
endo	473	8.0	8.0	2NH ₃	
exo	473-813	59.0	58.0	HL-residue	
exo	813-1063	15.0	16.1	20CN-0	
residue CoO	1063	18.0	17.9		
		$[Co(HL)_2(NCS)_2]$			
endo	513	14.0	12.8	NCS	
endo	513-673	7.0	7.5	2NH ₃	
exo	673–1073	61.0	63.2	2L*+NCS	
residue CoO	1073	18.0	16.5		
		$[Co(HL)_2(H_2O)_4](NO_3)_2$			
endo	403	13.0	13.5	4H ₂ O	
exo	503–593	48.0	49.2	2NL-O	
endo	593-713	25.0	23.3	2NO3	
residue CoO	713	14.0	14.0		

Table 1 Thermal decomposition of the ligand and its Co(II) complexes

Effect	T/V	Mass loss		Fragment	
	1/K	found/%	calc./%	eliminated	
		$[Co(HL)_2{N(CN)_2}_2]$			
exo	503	5.0	5.1	2CO	
exo	583-853	71.0	67.8	$2HL-O+2N_2$	
endo	1193	8.0	11.0	(CN) ₂	
residue CoO	1193	16.0	16.0		

Ta	ble	1	Continu	ed
14	DIC		Commu	\sim

 L^* = residue of pyrazole without 2NH₃ groups and oxygen

The first endothermic effect $(130^{\circ}C)$ with the octahedral aqua-complex is undoubtedly the elimination of the coordinated water (Fig. 8), whereas the subsequent exo- and endothermic effects correspond to elimination of the organic molecule and NO₃ group respectively. In contrast to the previous complexes, the first two endothermic effects observed for the dicyanamide complex are due to elimination of CO and pyrazole, whereas the subsequent endothermic process is the formation and elimination of dicyanogen (Fig. 9).

As can be seen from Table 1, the least stable compound is the aqua-complex (decomposition is completed at 440° C), and the most stable is dicyanamide complex, which is decomposed not before 920°C. The final decomposition product of all the complexes is CoO.

References

- 1 V. M. Leovac, E. Z. Ivegeš, V. I. Češljević, A. F. Petrović, D. M. Petrović and D. Poleti, J. Serb. Chem. Soc., 61 (1996) 551.
- 2 V. M. Leovac, D. Ž. Obadović, A. F. Petrović and S. Yu. Chundak, J. Thermal Anal., 34 (1988) 1236.
- 3 D. Ž. Obadović, V. M. Leovac, A. F. Petrović and S. Yu. Chundak, J. Thermal Anal., 36 (1990) 2843.
- 4 V. I. Dulova, A. P. Myagchenko, V. D. Kolotyk and K. Yu. Chotii, Koord. Khim., 8 (1982) 1103.